论文→[ 科技论文 ]
首页 - 科技论文 - 本页网址:https://www.woailunwen.com/keji/72777/

研究生: 林文斐
研究生(外文): Wen-Fei Lin
论文名称: 雷射加工异质材料之性质研究
论文名称(外文): The Investigation on the Behaviors of the Heterogeneous Material in Laser Process
指导教授: 洪博彦、徐祥祯徐祥祯引用关係、吴士杰
指导教授(外文): Bo-Yen Hong、Hsiang-Chen Hsu、Shih-Jeh Wu
口试委员: 曹芳海、陈永富、吕宗行、符志强
口试委员(外文): Fang-Hai Tsao、Yung-Fu Chen、Tzong-Shyng Leu、Chih-Chiang Fu
口试日期: 2021-07-05
学位类别: 博士
校院名称: 义守大学
系所名称: 材料科学与工程学系
学门: 工程学门
学类: 材料工程学类
论文种类: 学术论文
论文出版年: 2021
毕业学年度: 109
语文别: 中文
论文页数: 83
中文关键词: 划区屏蔽、雷射烧蚀、紫外光雷射、微米制程、环氧树酯封装、雷射辅助气体、异质材料、热设计
外文关键词: Compartment shielding、Laser ablation、UV laser、Micromanufacturing、Epoxy molding compound (EMC)、Gas-aided laser、Heterogeneous material、Thermal design


本研究对雷射加工划区屏蔽技术(compartment shielding),进行了一系列实验规划;目的在探讨雷射加工异质材料时,不同的加工条件对材料性质、加工产生温度的影响,并提供材料面对雷射加工时的基础知识。
研究目标是成功导入雷射用于半导体封装制程,稳定产品量产品质。令人关心的议题有如材料本身的品质、环境辅助气体的影响、不同异质材料对雷射画线的反应、加工过程产生之温度等等。
实验规划分为两个前置实验与最终实验,前置实验是为了将最终实验排除不必要的影响因素。第一组前置实验是材料稳定性的实验,不同填充物尺寸的异质材料12μm和48μm,经雷射加工后的稳定性。第二组前置实验是雷射加工异质材料时,以氮气、氧气、空气等三种辅助气体喷于加工处,观察辅助气体对加工结果的影响。最终的主要实验是将热电偶埋于异质材料中,纪录雷射画线过程产生的温度。确定加工过程的热不会对半导体产生负面影响。
结果是封装的填充物尺寸12μm比48μm稳定;辅助气体对雷射加工的效果影响太小,需佐以清洗;雷射加工最高的测得温度是100.94℃,低于常规半导体的烧机测试温度(250℃),得到雷射加工不会对距离加工处200μm的电子元件造成破坏的结论。


This thesis experiments for the compartment shielding machined by laser are conducted. The purpose of this research is to investigate how the process parameters affects the outcomes of irradiated i.e., material properties, temperature rise and the induced impact during laser machining process on heterogeneous materials.
These objects of research are by using laser as a main tool in microelectronic packaging process under stabilized the quality of mass production. Key issues concerned are the properties of material, effect of aided gas, the behaviors of heterogeneous materials during laser process, and how much temperature created. Hopefully the findings from this research can be helpful to field and process engineers as fundamental knowledge base.
Experiments are planned as two-part pre-studies and the final experiment. The two-part pre-studies are set to preclude the unnecessary factors from the final experiment. First set of experiments is on the stability of materials of different filler sizes, i.e., 12 and 48μm after laser processing. Second, during laser scribing on the heterogeneous material, one of three kinds of gases, i.e., nitrogen, oxygen, and air were used to assist the ablation process and the results were observed and recorded for optimal settings, e.g., flow rate. Finally, the temperature during laser scribing the heterogeneous material at certain locations were measured by thermal couples embedded in the target work pieces to ensure there is no side effects from heat on the semi-conductor components i.e., Heat Affect Zone.
Results show that filler size 12μm is more stable than that 48μm. Assisting gas is not enough for cleaning material, and offline clean by chemical solution or dry ice is necessary. The highest local temperature at 100.9℃ was measured during laser process which is lower than the burn-in test temperature, 250℃, and it shows that laser process designed won’t damage the electrical components away from the scribing area 200μm.


中文摘要 Ⅰ
英文摘要 Ⅱ
志谢 Ⅲ
总目录 Ⅳ
表目录 Ⅵ
图目录 Ⅶ
第一章 前言 1
1.1 研究背景 1
1.2 研究动机 3
第二章 雷射加工相关理论 7
2.1 受激发出雷射 7
2.2 掺铷镱铝石榴石雷射共振腔 10
2.3 声光Q开关调制 14
2.4 光接触到材料的反应 18
2.5 异质材料的雷射剂量 21
第三章 开发过程:材料与设备 23
3.1 异质材料介绍 23
3.1.1 EMC 24
3.1.2 IC基板 25
3.2 加工设备 26
3.2.1 雷射的选用31
3.2.2 振镜 33
3.2.3 聚焦镜 34
3.2.4 光学变焦 36
3.2.5 机台整合 37
3.3 失效分析 39
3.3.1 漏光40
3.3.2 侧蚀 42
第四章 实验规划 45
4.1 实验一:异质材料可靠度实验 45
4.2 实验二:辅助气体实验 47
4.3 实验三: 温度量测实验 49
4.3.1 实验3.1 内部温度量测52
4.3.2 实验3.2 表面温度量测 56
第五章 结果与讨论 58
5.1 实验一:异质材料可靠度实验结果 59
5.2 实验二:辅助气体实验结果 64
5.3 实验三:温度量测结果 69
第六章 结论与现下的工作 76
6.1 结论 76
6.2 现下工作 76
参考文献 79


[1]. H. C. Hsu, S. J. Wu, W. F. Lin, B. Houng, “Reliability Design and Optimization Process on Through Mold Via Using Ultrafast Laser”, Polymers & Polymer Composites, vol.5, no.2, Jan.2018, pp.1-8.
[2]. D. E. Lee, H. W. Kim, B. S. Kong, H. O. Choi, “A Study on the Curing Kinetics of Epoxy Molding Compounds with Various Latent Catalysts Using Differential Scanning Calorimetry”, Journal of Applied Polymer Science, vol.134, issue 35, Sep.15, 2017, 45252.
[3]. Y. K. Huang, D. Bigio, M. G. Pecht, “Investigation of the Size and Spatial Distribution of Fillers in Mold Compounds After Device Packaging”, IEEE Transactions on Components and Packaging Technologies, vol.29(2), Jul.2006, pp.364-370.
[4]. S. H. Park, J. Y. Park, Y. H. Kim, “Effect of Permanganate Treatment on Through Mold Vias for an Embedded Wafer Level Package”, Electronic Materials Letters, vol.9, Jul.10, 2013, pp.459–462.
[5]. J. A. Herbsommer, “Effect of Epoxy Molding Compound on the Electrical Performance of Microelectronic Devices”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol.2(8), Aug.2012, pp.1293-1297.
[6]. A. Alwaidh, M. Sharp, P. French, “Laser Processing of Rigid and Flexible PCBs”, Optics and Lasers in Engineering, vol.58, Jul.2014, pp.109-113.
[7]. A. Rawicz, “Theodore Harold Maiman and the invention of Laser”, Proceedings of SPIE - The International Society for Optical Engineering, vol.7138, 713802, November 2008.
[8]. X.C. Wang, Z.L. Li, T. Chen, B.K. Lok, D.K.Y. Low, “355 nm DPSS UV Laser Cutting of FR4 and BT/Epoxy-Based PCB Substrates”, Optics and Lasers in Engineering, vol.46, issue 5, May.2008, pp.404-409.
[9]. J. M. Yannou, C. Zinck, E. Cheng, V. K. Liao, A. Chan, N. Tien, “Orchestrating Packaging Technologies for an Extra Sensory World”, Proc. Semicon West, San Francisco, CA, Jul.2016.
[10]. G.B.J. Cadot, D.A. Axinte, J. Billingham, “Continuous Trench, Pulsed Laser Ablation for Micro-machining Applications”, International Journal of Machine Tools and Manufacture, vol.107, May.2016, pp.8-20.
[11]. K. O. Ahn, S. H. Park, Y. H. Kim, “Degradation of Adhesion between Cu and Epoxy-based Dielectric During Exposure to Hot Humid Environments”, Microelectronics Reliability, vol.78, Nov.2017, pp.1-10.
[12]. J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulzc, “Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons”, CIRP Annals, vol.51, Issue 2, 2002, pp.531-550.
[13]. J. R. Lawrence, Advances in Laser Materials Processing: Technology, Research and Application 1st edition, Woodhead Publishing, 2010
[14]. M. Popescu, A. Paino, K. Stone, J. M. Keller, “Detection of Buried Objects in FLIR Imaging Using Mathematical Morphology and SVM”, IEEE Symposium on Computational Intelligence for Security and Defence Applications, 2012, pp.1-5
[15]. FLIR System, https://www.flir.com/, July.2018
[16]. Henkel, https://www.henkel-adhesives.com/tw/zh_tw/industries/electronics/semiconductor-packaging/component-level-electromagnetic-shielding.html, 2020
[17]. 丁胜懋,雷射工程导论 修订第四版,2003年
[18]. S. Suzuki, M. Takamura1 and H. Yamamoto1, “Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region”, Japanese Journal of Applied Physics, vol. 55, no.6S1, Jun. 2016, 06GF08.
[19]. L. Sobotova,M. Badida, “Laser marking as environment technology”, Open Engineering, vol.7, Issue 1, Nov. 2017, pp.303-316
[20]. M. Aden, E. Beyer, G. Herziger, and H. Kunze1, “Laser-induced vaporization of a metal surface”, Journal of Physics D: Applied Physics, vol.25, no.1, Apr. 2000, pp. 57-65.
[21]. R. Srinivasan, “Kinetics of the ablative photodecomposition of organic polymers in the far ultraviolet (193 nm)”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol.1, Issue 4, Jun. 1983.
[22]. J. Lawrence, J. Pou, D.K.Y. Low, E. Toyserkani, Advances in Laser Materials Processing, Woodhead Publishing Series in Welding and Other Joining Technologies, 2010, pp. 575-628.
[23]. J. Hillman, Y. Sukhman, D. Miller, M. Oropeza, C. Risser, “Multiwave hybrid laser processing of micrometer scale features for flexible electronic applications”, Proc. SPIE vol.9736, Laser-based Micro- and Nanoprocessing X, 97360E, Mar. 2016.
[24]. M. A. Unrath, “Acousto-optics Deflector Applications in Laser Processing of Dielectric or Other Materials”, US Patent 8404998B2, Mar. 2013.
[25]. C. J. Moorhouse, F. J. Villarreal, H. J. Baker, and D. R. Hall, “Laser Drilling of Copper Foils for Electronics Applications”, IEEE Trans. on Components and Packaging Technologies, vol.30, no.2, Jun. 2007, pp. 254-263.
[26].工业材料杂志 392期:邱国展,“半导体构装技术新浪潮”,2019/08,第52页。
[27]. C. K. N. Patel, “Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2”, Phys. Rev. vol.136, 30 November, 1964, A1187
[28]. W. T. Silfvast, Laser Fundamentals 2nd Edition, Cambridge University Press, New York, 2004
[29]. S. Prakash, S. Kumar, “Microchannel fabrication via direct laser writing”, Microfabrication and Precision Engineering 1st edition, Woodhead Publishing, J. Paulo Davim, Jan. 2017, pp.163-187.
[30]. N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, N. Wu, “Comparative study of laser surface harding of 50CrMo4 Steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration”, Surface and Coatings Technology, January 23-28, 2000.
[31]. P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, and M. D. Perry, “Femtosecond Laser Materials Processing”, Photonics West 2000 Symposium, San Jose, CA, January 23-28, 2000.
[32]. M. Mielke, M. Greenberg, C. Martinez, D. Gaudiosi, T. Booth, “Application of Ultrafast Lasers”, Conference on Lasers and Electro-Optics, May 2012.
[33]. N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein, “The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICP-MS”, Journal of Analytical Atomic Spectrometry, vol.28(11), 2013, pp. 1781–1787.
[34]. D. Mueller, D. Clark, J. VanNunen, E. Rea, H. Haloui, “Laser-based Package Singulation and Trenching for Sip”, Additional Conference (Device Packaging, HiTEC, HiTEN, and CICMT), Jan. 1, 2016(DPC).
[35]. DISCO Corporation, https://www.disco.co.jp/eg/solution/library/laser/ablation_process.html, 2020
[36]. Trumpf, https://www.trumpf.com/en_US/products/laser/short-and-ultrashort-pulse-laser/trumicro-series-5000/, 2021
[37]. D. Bergström, The Absorption of Laser Light by Rough Metal Surfaces, Doctoral thesis, 2008
[38]. Raylase, https://www.raylase.de/en/products/2-axis-deflection-unit.html, 2020
[39]. Thorlabs, Inc., https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10766, 1999-2020
[40]. SILL, https://www.silloptics.de/en/products/sill-technicon/laser-optics/f-theta-lenses#c6005, 2020
[41]. Raylase, https://www.raylase.de/en/products/3-axis-deflection-units/focusshifter.html, 2020
[42].林文斐、张境晃,“雷射加工装置”,中华民国专利证书新型第M510208号,2015年10月11日至2025年6月1日
[43]. 科学发展 476期:童世煌,“高分子材料的流动性与弹性”,2012/08,第16-21页。
[44]. Y. H. Liu, H. Maruyama, S. Matsusaka, “Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet”, Aerosol Science and Technology, vol.45(12), Jul.2011, pp.1519-1527.

累计有19527人觉得此论文有用

免责声明

雷射加工异质材料之性质研究
本文内容整理自网络,有修改,版权归原作者所有。如有侵权,我们将立即更正或删除相关内容。
联系邮箱 webmaster(#at)woailunwen.com [ (#at)改为@ ]
划区屏蔽 雷射烧蚀 紫外光雷射 微米制程 环氧树酯封装 雷射辅助气体 异质材料 热设计

网友回答

还没有人提问雷射加工异质材料之性质研究,现在提问沙发就是你的!
点击加载更多