论文→[ 科技论文 ]

多链路操作系统上的平均数据封包和重排序延迟评估

阅读量:02021-10-29作者:徐孟祺来源:电算机一般学类
首页 - 科技论文 - 本页网址:https://www.woailunwen.com/keji/72809/

研究生: 徐孟祺
研究生(外文): Meng-Chi Hsu
论文名称: 多链路操作系统上的平均数据封包和重排序延迟评估
论文名称(外文): Evaluations of the Average Packet and Resequencing Latency on IEEE802.11be Multi-Link Operation Systems
指导教授: 林永松林永松引用关係
口试委员: 陈家麟、吕俊贤、孔令杰
口试日期: 2020-07-16
学位类别: 硕士
校院名称: 国立台湾大学
系所名称: 资讯管理
学门: 电算机学门
学类: 电算机一般学类
论文种类: 学术论文
论文出版年: 2020
毕业学年度: 108
语文别: 英文
论文页数: 72
中文关键词: 无线区域网路、拉格朗日鬆弛法、重新排序、多链路操作系统、延迟时间、等候理论
外文关键词: Wi-Fi、Lagrangian Relaxation、Resequencing、Multi-Link Operation、Latency、Queuing theory


为了处理更高密度,高带宽高吞吐量,低延迟和可靠性的新应用,在激增的无线区域网路环境,IEEE于2018年起草IEEE802.11be(Extreme High Throughout),期望于2024年成工业标准,各IC厂家也计画于2022年提供第一代晶片。在802.11be裡,媒体存取控制(MAC)层引入多链路(Multi-link)技术, 多个Wi-Fi设备进行多链路数据聚合,透过跨多AP分配数据封包,以提高峰值吞吐量并减少延迟,增加信道和频谱使用量(2.4 / 5/6 GHz)和增强传输数据封包的可靠性。但该应用程序会产生数据包负载平衡和重新排序平衡的问题
本论文针对此关键问题,利用拉格朗日鬆弛法,和MM1等候理论模型来分析数据包排队延迟,并开发一个重新排序模型,以了解重新排序平衡问题的影响,分析总体延迟而提出而提出多链路流量(Multi-link) 的最佳到达速率比率,减少总延迟,也提出最大到达率,以达到最大化链路流量(Multi-Link)系统吞吐量。


In order to handle new applications with higher density, high bandwidth, high throughput, low latency and reliability, in the rapidly increasing wireless local area network environment, IEEE drafted IEEE802.11be (Extreme High Throughout) in 2018 and expects to become an industry in 2024 Standards. IC manufacturers also plan to provide the first generation of chips in 2022. In 802.11be, the media access control (MAC) layer introduces Multi-link technology. Multiple Wi-Fi devices perform multi-link data aggregation and distribute data packets across multiple APs to improve peak throughput, reduce the delay, increase the channel and spectrum usage (2.4 / 5/6 GHz) and enhance the reliability of transmitting data packets. However, the application will have packet load balancing and reordering balancing problems.
In response to this key issue, this paper uses Lagrangian minimization and MM1 queuing models to analyze the packet queuing delay, and develops a resequencing model, to understand the impact of the resequencing balance problem, analyzes the overall delay and proposes multi-link traffic (Multi -link) to reduce the total delay, and also propose the maximum arrival rate to maximize the throughput of the Multi-Link system.


志谢 iii
中文摘要 iv
THESIS ABSTRACT v
目录 vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Thesis Structure 5
Chapter 2 Literature discussion 6
2.1 802.11b 6
2.2 802.11a 7
2.3 802.11g 9
2.4 802.11n – Wi-Fi 4 10
2.4.1 Multiple-input multiple-output (MIMO) 10
2.4.2 Support 40MHz bandwidth 11
2.4.3 Frame Aggregation 11
2.4.4 Modulation 12
2.5 802.11ac – Wi-Fi 5 12
2.5.1 Support 8 spatial streams 80MHz bandwidth, 13
2.5.2 MUMIMO 13
2.5.3 Modulation 14
2.6 802.11ax –WI-Fi 6 (MAX Wi-Fi) 15
2.6.1 Modulation 15
2.6.2 Multi-user MIMO (MU-MIMO): 17
2.6.3 Multi-user OFDMA (Orthogonal Frequency Division Multiple Access) 18
2.6.4 Multi-User up link operation 19
2.6.5 Comparison of ac and ax 20
2.7 802.11BE 21
2.7.1 Timeline 21
2.7.2 320M BW 22
2.7.3 Spatial Stream 23
2.7.4 Modulation 23
2.7.5 Multi-AP coordination 23
2.7.6 Multi-Link Operation - (MLO) 24
2.8 Summary 25
Chapter 3 Problem Formulation 26
3.1 Problem Description 26
3.2 Mathematical Packet Queuing Latency Model 27
3.2.1 Data Rate 27
3.3 MM1 Packet Queuing and Resequencing Latency Model 30
3.3.1 M/M/s 30
3.3.2 Average Packet Queuing Latency 31
3.3.3 Input arrival and output service rate 35
3.3.4 Average Packet Queuing Latency 36
3.3.5 Average Packet Resequencing Latency 38
Chapter 4 Simulation and Analysis 45
4.1 Simulation setup 45
4.1.1 Estimated max channel rate (µ) in 802.11BE. 45
4.1.2 Find input and output rate (λ, µ) 45
4.1.3 Decide the network µ allocate to the two links 46
4.2 Lagrangian numerical and Analytical Queuing Latency Simulation 47
4.2.1 Analytical Calculation 47
4.2.2 Lagrangian Numerical simulation 48
4.3 MM1 Packet Queuing and Resequencing Latency Simulation 53
4.3.1 Decide the Packet Window Size 53
4.3.2 Simulation with Various μ ratio 55
4.4 Analysis and observation 61
4.4.1 Average packet queue delay 61
4.4.2 Average Resequencing forwarding delay 63
4.4.3 Total delay 65
4.4.4 Enhance the input arrival rate 66
Chapter 5 Conclusion 68
5.1 Summary 68
5.2 Future work 69
Bibliography 70


List of Figures
FIGURE 1: 全球正在使用中的家用WI-FI设备 [1] 2
FIGURE 2: THE EVOLUTION OF WI-FI 3
FIGURE 3: THE LEGACY FDM AND OFDM 8
FIGURE 4: SUBCARRIERS SYSTEM OF OFDM SIGNALS AFTER FFT 8
FIGURE 5 : 5G SPECTRUM (FCC) [9] 9
FIGURE 6 : 802.11 2.4G BAND 10
FIGURE 7 : MIMO 11
FIGURE 8 : MU MOMO [13] 14
FIGURE 9 : COMPARISON OF MODULATION AND SUBCARRIER FOR 11AX AND 11AC 16
FIGURE 10 : OFDMA 18
FIGURE 11 : OFDMA USER ALLOCATION 19
FIGURE 12 : MU UPLINK OPERATION 20
FIGURE 13 : 802.11BE TIME LINE 21
FIGURE 14 : 6G BAND ALLOCATION 22
FIGURE 15 : MULTI-AP COORDINATION 23
FIGURE 16 : MULTI-LINK OPERATION IN ORDER 24
FIGURE 17 : MULTI-LINK OPERATION OUT OF ORDER 24
FIGURE 18 : MLO SYNCHRONOUS OPERATION 25
FIGURE 19 : MLO ASYNCHRONOUS OPERATION 25
FIGURE 20 : MLO ARCHITECTURE 27
FIGURE 21 : AMPDU, AMSDU, PPDU 28
FIGURE 22 : 802.11 CSMA/CA DCF OPERATIONS 29
FIGURE 23 : HE MU PPDU FORMAT 29
FIGURE 24 : PARALLEL MM1 QUEUING SYSTEM 30
FIGURE 25 : OD PAIR TOPOLOGY 33
FIGURE 26 : PACKET QUEUING MM1 FLOW DIAGRAM 37
FIGURE 27 : THE ORDER ISSUE IN MLO SYSTEM 38
FIGURE 28 : RESEQUENCING FLOW DIAGRAM 41
FIGURE 29 : THE THROUGHPUT AND UTILIZATION V.S. THE NUMBERS OF MPDU 46
FIGURE 30 : PACKET QUEUING AT ITERATION COUNTS=10, 50, 500, 1000, 2000 AND 3000 52
FIGURE 31: MPDU IN ONE AMPDU COUNTS VS DELAY 55
FIGURE 32: LR N RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH CONSTANT SERVICE RATE 58
FIGURE 33: LR, RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH RATIO OF TWO SERVICE AGENTS 61
FIGURE 34: ENHANCE THE INPUT RATES 67


List of Tables
TABLE 1: 802.11A MODULATION TABLE 7
TABLE 2: 802.11N MCS AND RATE TABLE 12
TABLE 3: 802.11AC MCS AND RATE TABLE 15
TABLE 4: 802.11AC MCS AND RATE TABLE 17
TABLE 5: COMPARISON BETWEEN 802.11AC AND 802.11AX 20
TABLE 6: 802.11 PHY STANDARDS 25
TABLE 7: RESEQUENCING CONTROL TABLE 39
TABLE 8: RESEQUENCING MANAGER OPERATION 43
TABLE 9: RESEQUENCING TABLE 44
TABLE 10: CALCULATION FOR THE 802.11 RATES AND UTILIZATION 46
TABLE 11: SUMMARY TABLE FOR BELOW 4 SIMULATION. 54
TABLE 12: AVERAGE PACKET QUEUEING DELAY. 61
TABLE 13: SIMULATED AND ANALYTICAL RESULT RATIO 63
TABLE 14: RESEQUENCING FORWARDING DELAY 64
TABLE 15: TOTAL DELAY 65


[1] S. Analytics, "无线家庭:评估全球家庭Wi-Fi设备市场规模," CEDA导读, http://www.cedachina.org/index.php/Home/News/info/d/8956.html, 2019-08-09.
[2] "10th Annual Cisco Visual Networking Index (VNI) Mobile Forecast Projects 70 Percent of Global Population Will Be Mobile Users," Cisco News Release, https://newsroom.cisco.com/press-release-content?articleId=1741352, February 03,2016.
[3] D. L'opez-P'erez, A. Garcia-Rodriguez, L. Galati0Giordano, M. Kasslin and K. Doppler, "IEEE 802.11 be Extremely High Throughout : Tha Next Generation of WiFi Techonology Beyond 802.11ax," IEEE Commmunication Magazine, vol. 57, no. 9, pp. 113-119, 24 September 2019.
[4] M. C. a. B. B. Toni Adame, "Time-Sensitive Networking in IEEE 802.11be:On the Way to Low-latency WiFi 7," arXiv:1912.06086 [cs.NI], Barcelona, Spain, 12 Dec 2019.
[5] F. Chen, H. Zhai and Y. Fang, "An Opportunistic MAC in Multichannel Multiradio Wireless Ad Hoc Networks," IEEE Wireless Communications and Networking Conference, pp. pp.1685-1690, March 31 2008-April 3 2008..
[6] M. S.Gast, 802.11 Wireless Network: the definitive guide, Sebastopol, CA: O'Relly Media, April 2005.
[7] 简荣宏、廖冠雄, 无线区域网路, 全华科技图书, 2007.
[8] 粘添寿, "电脑网路与连结技术:第十五章 Wireless LAN 网路," http://www.tsnien.idv.tw/Network_WebBook/chap15/15-8%20IEEE%20802_11%20%E5%BB%B6%E4%BC%B8%E8%A6%8F%E6%A0%BC.html.
[9] Google, "5g spectrum," https://www.routerguide.org/wp-content/uploads/2018/11/5ghz-wifi-channel.png.
[10] "IEEE 802.11n-2009," Wikipedia, https://en.wikipedia.org/wiki/IEEE_802.11n-2009.
[11] D. N. Resource, "802.11n," http://www.rhyshaden.com/802_11n.htm.
[12] R. S. Eldad Perahia, Next Generation Wireless LANs-802.11n and 802.11AC, New York: Cambridge University Press, 2013.
[13] Tenda腾达, "MU-MIMO技术是什麽 ?," 科技, https://kknews.cc/tech/kambbvq.html, 2017-09-12.
[14] E. Au, "IEEE 802.11be: Extremely High Throughput [Standards]," IEEE Vehicular Technology Magazine , vol. 14, no. 3, pp. 138-140, 19 August 2019.
[15] Y. Cui, Y. Xu, X. Sha, R. Xu and Z. Ding, "A novel multi-radio packet scheduling algorithm for real-time traffic on generic link layer," 15th Asia-Pacific Conference on Communications, pp. 122-125, Oct. 2009.
[16] T. Høiland-Jørgensen, M. Kazior, D. Täht and P. H. a. A. Brunstrom, "Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi," arXiv:1703.00064v2 [cs.NI] , Karlstad University, 6 Mar 2017.
[17] R. G. D. Bertsekas, Data Networks, Prentice Hall, 1992.
[18] C. Kwon, "Julia Programming for Operations Research," University of South Florida., CreateSpace Independent Publishing Platform, 2016, May 29, 2016, p. chap 9 .
[19] M.-C. TSAI, F. Y.-S. LIN and Y.-F. WEN, "Lagrangian-Relaxation-Based Self-Repairing Mechanism for Wi-Fi Networks," IEEE Access, vol. 7, p. 15868, February 12, 2019..
[20] W. Koehrsen, "The Poisson Distribution and Poisson Process Explained," Towards Data Science Inc., https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459, Jan 21, 2019.
[21] Y. Yih, Handbook of Healthcare Delivery Systems chap.16, Boca Raton, FL ,USA: CRC Press Taylor & Francis Group, 2011.
[22] F. Anwar, M. H. Masud, B. U. I. Khan*, R. F. Olanrewaju and S. A. Latif, "Analysis of Packet Reordering Delay for Bandwidth Aggregation in Heterogeneous Wireless Networks," IPASJ International Journal of Information Technology, vol. 6, no. 7, July 2018.
[23] T. Elkourdi, A. Chincholi, T. Le and A. Demir, "Cross-Layer Optimization for Opportunistic Multi-MAC Aggregation," in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2-5 June 2013.

累计有19527人觉得此论文有用

免责声明

多链路操作系统上的平均数据封包和重排序延迟评估
本文内容整理自网络,有修改,版权归原作者所有。如有侵权,我们将立即更正或删除相关内容。
联系邮箱 webmaster(#at)woailunwen.com [ (#at)改为@ ]
无线区域网路 拉格朗日鬆弛法 重新排序 多链路操作系统 延迟时间 等候理论

网友回答

还没有人提问多链路操作系统上的平均数据封包和重排序延迟评估,现在提问沙发就是你的!
点击加载更多