论文→[ 科技论文 ]

金属覆载的镍-铝双层状氢氧化物用于CO2光催化还原

阅读量:02022-01-27作者:匡佳谦来源:化学工程学研究所
首页 - 科技论文 - 本页网址:https://www.woailunwen.com/keji/72851/

研究生: 匡佳谦
研究生(外文): Chia-Chien Kuang
论文名称: 金属覆载的镍-铝双层状氢氧化物用于CO2光催化还原
论文名称(外文): CO2 Photocatalytic Reduction by Metal-Loaded Ni-Al Layered Double Hydroxides
指导教授: 吴纪圣
指导教授(外文): Jeffrey Chi-Sheng Wu
口试委员: 吴乃立、张淑闵
口试委员(外文): Nae-Lih Wu、Sue-Min Chan
口试日期: 2016-08-08
学位类别: 硕士
校院名称: 国立台湾大学
系所名称: 化学工程学研究所
学门: 工程学门
学类: 化学工程学类
论文种类: 学术论文
论文出版年: 2016
毕业学年度: 105
语文别: 中文
论文页数: 144
中文关键词: 二氧化碳光催化还原,金属负载LDH,双胞反应器
外文关键词: CO2 photocatalytic reduction, metal-loaded LDH, twin reactor


时至今日,工业发展蓬勃,导致过多的二氧化碳排放,全球暖化现象更显恶化;过度的能量消耗,化石燃料不足将使人类未来面临能源短缺。为同时解决此两大问题,学界针对消除二氧化碳做了许多研究,而二氧化碳光催化还原最受到关注。其具有两大特点:一、光还原的有机产物可作为能源再利用,减少碳排放及对于石化燃料的仰赖;二、触媒以光能驱动还原反应,而太阳光是用之不尽、取之不竭的洁淨能源。
本研究中以镍-铝层状双金属氢氧化物(Ni-Al LDH, Ni/Al = 3)作为二氧化碳光催化还原的触媒材料,并透过共沉淀法複合水热处理合成。此外,藉由初湿含浸法与硼氢化钠水溶液的还原,分别负载0.5 wt% Pt与Cu金属于Ni-Al LDH表面作为共触媒。三种Ni-Al LDH分别经过一系列的触媒鑑定,深入了解其光学特性、外观型态、晶体结构、元素价态等材料性质。
光触媒活性的测试分别于单一反应器和双胞反应器中进行。单一反应器中,Ni-Al LDH触媒皆散佈于水溶液中,于紫外光灯(λ = 254 nm,光照度~ 6.5 mW/cm2)照射下反应4小时。经比较,0.5 wt% Cu/Ni-Al LDH有最高的CO及CH4产量,分别达11.53 μmol/gcat及0.86 μmol/gcat。负载金属些微提升了CO及CH4产量。另于Ni-Al LDH的气相反应中,可发现其还原效率略有提升;引入氢气作为氢源时,CO产量的增幅更为明显。
双胞反应器中,改以两盏300 W氙灯(光照度~ 90 mW/cm2)作为可见光源,照射双边反应端8小时。0.5 wt% Cu/Ni-Al LDH于液相反应系统中,还原物产量分别为CO (1.05 μmol/gcat)、CH4 (0.17 μmol/gcat)、CH3OH (2.90 μmol/gcat)、HCHO (0.20 μmol/gcat)及H2 (0.43 μmol/gcat),紫外光(λ = 254 nm)量子使用效率1.8711%为三者中最高。


Nowadays, people are facing the threat of the worsening greenhouse effect, triggered by the emission of more CO2. Furthermore, the energy shortage may bring about the energy crisis. To deal with these two issues simultaneously, scientists have done a lot of studies to reduce CO2 emissions, especially by utilizing photocatalysts. On one hand, the products of this reaction are able to be reused as fuels again, and the carbon footprint can also be reduced. On the other, solar energy is inexhaustible, ubiquitous, and clean.
In this study, we tried to use layered double hydroxides (LDH) as the photocatalyst of CO2 reduction. Nickel-aluminum LDH was the selected material, denoted as Ni-Al LDH. Ni-Al LDH was synthesized by coprecipitation and hydrothermal treatment. Besides, Pt and Cu were loaded on the surface of Ni-Al LDH by incipient wetness method and reduction of sodium borohydride (NaBH4) solution. The as-prepared Ni-Al LDHs were thoroughly characterized, in order to study their optical properties, surface morphology, crystal structure, chemical status, and thermal properties.
The photocatalytic tests were conducted in a single photoreactor and a twin reactor system. In the single photoreactor, Ni-Al LDHs were dispered in aqueous phase after UV irradiation for four hours at room temperature. We investigated slight enhancement of CO and CH4 production, and 0.5 wt% Cu/Ni-Al LDH gave the highest yields of CO (11.53 μmol/gcat) and CH4 (0.86 μmol/gcat). From the result of another test, we found that Ni-Al LDHs would have higher activities in gaseous phase. The enhancement of CO2 photoreduction to CO from H2 addition was also comparably evident.
In the twin reactor system, 300W xenon lamps were applied as the visible light source instead. Three Ni-Al LDHs acted as hydrogen evolution and CO2 reduction photocatalyst in aqueous phase. In the presence of 0.5 wt% Cu/Ni-Al LDH, the yields were CO (1.05 μmol/gcat), CH4 (0.17 μmol/gcat), CH3OH (2.90 μmol/gcat), HCHO (0.20 μmol/gcat) and H2 (0.43 μmol/gcat), respectively. Meanwhile, its quantum efficiency of UVC reached 1.8711%, the highest of three Ni-Al LDHs.


口试委员会审定书 #
志谢 1
摘要 2
ABSTRACT 3
CONTENTS 4
LIST OF FIGURES 8
LIST OF TABLES 13
Chapter 1 绪论 14
Chapter 2 文献回顾 16
2.1 光触媒简介 16
2.2 光触媒反应原理 16
2.3 光触媒催化反应 19
2.4 层状双金属氢氧化物(layered double hydroxides, LDHs) 20
2.4.1 结构与性质 20
2.4.2 LDHs负载金属共触媒 26
2.5 触媒制备方法 29
2.5.1 共沉淀法 29
2.5.2 离子交换法 29
2.6 二氧化碳 30
2.6.1 简介 30
2.6.2 二氧化碳的固定 31
2.6.3 二氧化碳光催化还原 32
2.6.4 光合作用 38
2.7 太阳光谱介绍 42
Chapter 3 实验方法 44
3.1 实验药品与仪器设备 44
3.1.1 药品 44
3.1.2 仪器 45
3.2 触媒制备 46
3.2.1 共沉淀-水热法(Coprecipitation-hydrothermal method) 46
3.2.2 初湿含浸法(Incipient wetness impregnation) 47
3.2.3 固态熔融法(Solid-state method) 48
3.2.4 光沉积法(Photodeposition method) 49
3.3 阳离子交换膜前处理 50
3.4 触媒特性分析与仪器分析原理 51
3.4.1 仪器型号与规格 51
3.4.2 原子吸收光谱仪(Atomic Absorption Spectroscopy, AAS) 52
3.4.3 电感耦合电浆质谱仪(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 53
3.4.4 紫外光-可见光光谱仪(Ultraviolet-Visible Light Spectroscopy, UV-vis) 54
3.4.5 场发射扫描式电子显微镜(Field Emission Scanning Electron Microscope, FE-SEM) 56
3.4.6 能量散佈光谱仪(Energy Dispersive X-ray Spectrometer, EDS) 57
3.4.7 场发射枪穿透式电子显微镜(Field Emission Gun Transmission Electron Microscope, FEG-TEM) 59
3.4.8 比表面积分析(Specific Surface Area Analysis) 59
3.4.9 X光光电子光谱仪(X-ray Photoelectron Spectroscopy, XPS) 60
3.4.10 X光绕射仪(X-ray Diffractometer, XRD) 61
3.4.11 热重示差同步扫描分析仪(Thermogravimetry/Differential Thermal Analysis Thermoanalyzer, TG-DTA) 63
3.4.12 气相管柱层析仪(Gas Chromatograph, GC) 63
3.4.13 SISC色层分析处理系统 67
3.4.14 高效液相层析仪(High Performance Liquid Chromatography, HPLC) 67
3.5 触媒光催化活性测试 68
3.5.1 单一反应器(Single photoreactor) 68
3.5.2 双胞反应器系统(Twin reactor system) 69
3.6 反应物定量分析 75
3.6.1 一氧化碳检量线 75
3.6.2 甲烷检量线 76
3.6.3 氮气、氧气检量线 77
3.6.4 氢气检量线 79
3.6.5 甲醇、甲醛之分析方法 80
Chapter 4 触媒特性分析与结果讨论 83
4.1 光触媒鑑定与特性分析 83
4.1.1 XRD晶体分析 83
4.1.2 UV-vis吸收光谱 85
4.1.3 AAS和ICP-MS分析金属负载量 87
4.1.4 FE-SEM及EDS-金属负载LDH样态与元素组成分析 90
4.1.5 FEG-TEM-负载金属观测 95
4.1.6 XPS金属价态鑑定 98
4.1.7 BET比表面积测定 100
4.1.8 TG-DTA分析 101
Chapter 5 光催化反应结果与讨论 102
5.1 单一反应器光催化空白实验 102
5.2 Ni-Al (Ni/Al = 3) LDH光催化二氧化碳还原 105
5.3 金属(Pt、Cu)负载Ni-Al LDH光催化二氧化碳还原 108
5.4 双胞反应器系统-模拟人工光合作用 113
5.5 产率及光能使用效率 120
Chapter 6 结论 124
REFERENCES 126
附录 I
个人小传 XIII


[1] C. Pasten, J.C. Santamarina, Energy and quality of life, Energy Policy, 49 (2012) 468-476.
[2] J.P. Smol, Climate Change: A planet in flux, Nature, 483 (2012) S12-S15.
[3] K. Li, X. An, K.H. Park, M. Khraisheh, J. Tang, A critical review of CO2 photoconversion: Catalysts and reactors, Catalysis Today, 224 (2014) 3-12.
[4] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, 3 (1968) 37-46.
[5] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte Chemie International Edition, 52 (2013) 7372-7408.
[6] P.D. Tran, L.H. Wong, J. Barber, J.S.C. Loo, Recent advances in hybrid photocatalysts for solar fuel production, Energy & Environmental Science, 5 (2012) 5902.
[7] M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, Journal of Electroanalytical Chemistry, 594 (2006) 1-19.
[8] H. Yoshida, Heterogeneous Photocatalytic Conversion of Carbon Dioxide, Green Energy and Technology, (2011) 531-559.
[9] J.M. Smith, H. Van Ness, M. Abbott, Introduction to Chemical Engineering Thermodynamics 7th edition, McGraw-Hill Education, (2005) 686.
[10] R. Allmann, The crystal structure of pyroaurite, Acta Crystallographica Section B, 24 (1968) 972-977.
[11] H.F.W. Taylor, Crystal structures of some double hydroxide minerals, Mineralogical Magazine, 39 (1973) 377-389.
[12] M.K. Ram Reddy, Z.P. Xu, G.Q. Lu, J.C. Diniz da Costa, Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration, Industrial & Engineering Chemistry Research, 45 (2006) 7504-7509.
[13] S. Ishihara, P. Sahoo, K. Deguchi, S. Ohki, M. Tansho, T. Shimizu, J. Labuta, J.P. Hill, K. Ariga, K. Watanabe, Y. Yamauchi, S. Suehara, N. Iyi, Dynamic breathing of CO2 by hydrotalcite, Journal of the American Chemical Society, 135 (2013) 18040-18043.
[14] C.G. Silva, Y. Bouizi, V. Fornés, H. García, Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water, Journal of the American Chemical Society, 131 (2009) 13833-13839.
[15] K. Teramura, S. Iguchi, Y. Mizuno, T. Shishido, T. Tanaka, Photocatalytic conversion of CO2 in water over layered double hydroxides, Angewandte Chemie International Edition, 51 (2012) 8008-8011.
[16] S. Iguchi, K. Teramura, S. Hosokawa, T. Tanaka, Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides, Physical Chemistry Chemical Physics, 17 (2015) 17995-18003.
[17] M. Morikawa, Y. Ogura, N. Ahmed, S. Kawamura, G. Mikami, S. Okamoto, Y. Izumi, Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation, Catalysis Science & Technology, 4 (2014) 1644-1651.
[18] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
[19] K.-i. Katsumata, K. Sakai, K. Ikeda, G. Carja, N. Matsushita, K. Okada, Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides, Materials Letters, 107 (2013) 138-140.
[20] S. Kawamura, M.C. Puscasu, Y. Yoshida, Y. Izumi, G. Carja, Tailoring assemblies of plasmonic silver/gold and zinc–gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV–visible light, Applied Catalysis A: General, 504 (2015) 238-247.
[21] S. Link, M.A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, The Journal of Physical Chemistry B, 103 (1999) 4212-4217.
[22] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, Journal of the American Chemical Society, 130 (2008) 1676-1680.
[23] J.T. Kloprogge, D. Wharton, L. Hickey, R.L. Frost, Infrared and Raman study of interlayer anions CO32-, NO3-,SO42-, and CIO4- in Mg/Alhydrotalcite, American Mineralogist, 87 (2002) 623-629.
[24] A. Alejandre, F. Medina, P. Salagre, X. Correig, J.E. Sueiras, Preparation and Study of Cu−Al Mixed Oxides via Hydrotalcite-like Precursors, Chemistry of Materials, 11 (1999) 939-948.
[25] S. Velu, K. Suzuki, M. Okazaki, T. Osaki, S. Tomura, F. Ohashi, Synthesis of New Sn-Incorporated Layered Double Hydroxides and Their Thermal Evolution to Mixed Oxides, Chemistry of Materials, 11 (1999) 2163-2172.
[26] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams, Industrial & Engineering Chemistry Research, 45 (2006) 2558-2568.
[27] R. Obert, B.C. Dave, Enzymatic Conversion of Carbon Dioxide to Methanol:  Enhanced Methanol Production in Silica Sol−Gel Matrices, Journal of the American Chemical Society, 121 (1999) 12192-12193.
[28] T. Abe, M. Tanizawa, K. Watanabe, A. Taguchi, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method, Energy & Environmental Science, 2 (2009) 315.
[29] T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, O. Ishitani, Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2, ACS Appl Mater Interfaces, 3 (2011) 2594-2600.
[30] R.F. Service, Catalyst Offers New Hope for Capturing CO2 on the Cheap, Science, 327 (2010) 257-257.
[31] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria, Science, 330 (2010) 1797-1801.
[32] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638.
[33] A. Henglein, M. Gutiérrez, C.H. Fischer, Photochemistry of Colloidal Metal Sulfides 6. Kinetics of Interfacial Reactions at ZnS-Particles, Berichte der Bunsengesellschaft für physikalische Chemie, 88 (1984) 170-175.
[34] H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catalysis Today, 39 (1997) 169-175.
[35] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.-H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catalysis Communications, 11 (2009) 210-213.
[36] K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2, Journal of the American Chemical Society, 135 (2013) 4596-4599.
[37] M. Li, P. Li, K. Chang, T. Wang, L. Liu, Q. Kang, S. Ouyang, J. Ye, Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3, Chemical Communications, 51 (2015) 7645-7648.
[38] H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292.
[39] H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of the American Chemical Society, 125 (2003) 3082-3089.
[40] Y. Wang, F. Wang, Y. Chen, D. Zhang, B. Li, S. Kang, X. Li, L. Cui, Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation, Applied Catalysis B: Environmental, 147 (2014) 602-609.
[41] D.-S. Lee, H.-J. Chen, Y.-W. Chen, Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts, Journal of Physics and Chemistry of Solids, 73 (2012) 661-669.
[42] J.W. Lekse, M.K. Underwood, J.P. Lewis, C. Matranga, Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–xFexO2 (x = 0.05, 0.10, 0.15, 0.20) Delafossites, The Journal of Physical Chemistry C, 116 (2012) 1865-1872.
[43] Q. Liu, Y. Zhou, Z. Tian, X. Chen, J. Gao, Z. Zou, Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation, Journal of Materials Chemistry A, 22 (2012) 2033-2038.
[44] G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, Angewandte Chemie International Edition, 51 (2012) 2395-2399.
[45] Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan, Z. Zou, High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light, ACS Applied Materials & Interfaces, 3 (2011) 3594-3601.
[46] W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, J.C.S. Wu, A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis, Applied Catalysis B: Environmental, 132-133 (2013) 445-451.
[47] S.-H. Yu, C.-W. Chiu, Y.-T. Wu, C.-H. Liao, V.-H. Nguyen, J.C.S. Wu, Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator, Applied Catalysis A: General, 518 (2016) 158-166.
[48] C. Riordan, R. Hulstron, What is an air mass 1.5 spectrum? [solar cell performance calculations], Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 1990, pp. 1085-1088 vol.1082.
[49] S. Iguchi, K. Teramura, S. Hosokawa, T. Tanaka, Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides, Catalysis Today, 251 (2015) 140-144.
[50] G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media. Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles, Langmuir, 10 (1994) 4726-4730.
[51] L. Nie, J. Yu, X. Li, B. Cheng, G. Liu, M. Jaroniec, Enhanced Performance of NaOH-Modified Pt/TiO2 toward Room Temperature Selective Oxidation of Formaldehyde, Environmental Science & Technology, 47 (2013) 2777-2783.
[52] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation, The Journal of Physical Chemistry B, 108 (2004) 8992-8995.
[53] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, Journal of Catalysis, 259 (2008) 133-137.
[54] A. Goswami, A. Acharya, A.K. Pandey, Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane, The Journal of Physical Chemistry B, 105 (2001) 9196-9201.
[55] S. Hiroyuki, Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures, Japanese Journal of Applied Physics, 19 (1980) L735.
[56] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60 (1938) 309-319.
[57] W.H. Bragg, W.L. Bragg, The Reflection of X-rays by Crystals, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 88 (1913) 428-438.
[58] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, 11 (1978) 102-113.
[59] T. Nash, The colorimetric estimation of formaldehyde by means of the Hantzsch reaction, Biochemical Journal, 55 (1953) 416-421.
[60] Y. Lee, J.H. Choi, H.J. Jeon, K.M. Choi, J.W. Lee, J.K. Kang, Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light, Energy & Environmental Science, 4 (2011) 914.
[61] F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catalysis Today, 11 (1991) 173-301.
[62] D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 471 (2015) 20140792.
[63] N. Baliarsingh, L. Mohapatra, K. Parida, Design and development of a visible light harvesting Ni–Zn/Cr–CO32− LDH system for hydrogen evolution, Journal of Materials Chemistry A, 1 (2013) 4236.
[64] Y. Tang, B. Pattengale, J. Ludwig, A. Atifi, A.V. Zinovev, B. Dong, Q. Kong, X. Zuo, X. Zhang, J. Huang, Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid, Scientific Reports, 5 (2015) 18505.
[65] N.S. McIntyre, M.G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Analytical Chemistry, 47 (1975) 2208-2213.
[66] K.S. Kim, N. Winograd, R.E. Davis, Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies, Journal of the American Chemical Society, 93 (1971) 6296-6297.
[67] G. van der Laan, C. Westra, C. Haas, G.A. Sawatzky, Satellite structure in photoelectron and Auger spectra of copper dihalides, Physical Review B, 23 (1981) 4369-4380.
[68] Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I. Waterhouse, L.Z. Wu, C.H. Tung, L.J. Smith, D. O'Hare, T. Zhang, Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water, Advanced Materials, 27 (2015) 7824-7831.
[69] Y. Zhao, B. Li, Q. Wang, W. Gao, C.J. Wang, M. Wei, D.G. Evans, X. Duan, D. O'Hare, NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light, Chemical Science, 5 (2014) 951-958.
[70] H. Zhao, J. Xu, L. Liu, G. Rao, C. Zhao, Y. Li, CO2 photoreduction with water vapor by Ti-embedded MgAl layered double hydroxides, Journal of CO2 Utilization, (2016).
[71] J. Hong, W. Zhang, Y. Wang, T. Zhou, R. Xu, Photocatalytic Reduction of Carbon Dioxide over Self-Assembled Carbon Nitride and Layered Double Hydroxide: The Role of Carbon Dioxide Enrichment, ChemCatChem, 6 (2014) 2315-2321.

累计有19527人觉得此论文有用

免责声明

金属覆载的镍-铝双层状氢氧化物用于CO2光催化还原
本文内容整理自网络,有修改,版权归原作者所有。如有侵权,我们将立即更正或删除相关内容。
联系邮箱 webmaster(#at)woailunwen.com [ (#at)改为@ ]
二氧化碳 光催化 还原 金属负载LDH 双胞反应器

网友回答

还没有人提问金属覆载的镍-铝双层状氢氧化物用于CO2光催化还原,现在提问沙发就是你的!
点击加载更多